Math Courses for MS/PhD in Bioengineering

Please note that not all courses will be offered every year/semester and it is up to the student to confirm they have the appropriate background/prerequisites for the course.

Please also note that there may be alternative courses that will meet the requirement, they should be 500-level or greater and should generally be taught outside of SEAS.

AMCS 601 Algebraic Techniques for Applied Mathematics and Computational Science I
AMCS 602 Algebraic Techniques for Applied Mathematics and Computational Science II
AMCS 608 Analytic Techniques for Applied Math and Computational Science I
AMCS 609 Analytic Techniques for Applied Mathematics and Computation Science II
BE 504 Epigenomics
BE 510 Biomechanics and Biotransport
BE 518 Optical Microscopy
BE 530 Theoretical and Computational Neuroscience
BE 559 Multiscale Modeling of Biological Systems
BE 566 Network Neuroscience
BE 567 Mathematical Computation Methods for Modeling Biological Systems
BE 584 Mathematics of Medical Imaging and Measurements
BIOL 556 Advanced Statistics
BIOM 520 Concepts and Methods in Biostatistics - Basic
BIOM 521 Concepts and Methods in Biostatistics – Intermediate
BSTA 620 Probability I
BSTA 621 Statistical Inference I
BSTA 622 Statistical Inference II
BSTA 630 Statistical Methods for Data Analysis I
BSTA 631 Statistical Methods for Data Analysis II
BSTA 651 Introduction to Linear Models and Generalized Linear Models.
BSTA 774 Statistical Methods for Evaluating Diagnostic Tests.
CBE 508 Probability and Statistics for Biotechnology
CBE 520 Modeling, Simulations, and Optimization of Chemical Processes
CBE 522 Polymer Rheology and Processing
CBE 617 Control of Nonlinear Systems
CHEM 521 Statistical Mechanics 1
CIS 536 Computational Biology
CIS 537 Biomedical Image Analysis
ENM 502 Numerical Methods and Modeling
ENM 503 Introduction to Probability and Statistics
ENM 510 Foundations of Engineering Mathematics I
ENM 511 Foundations of Engineering Mathematics II
ENM 520 Theory and Computation for ODE/PDE-constrained optimization
ENM 520 Topics in Computational Science and Engineering
ENM 600 Functional Analysis
ENM 601 Special Topics in Engineering Mathematics - Nonlinear Dynamics and Chaos
ESE 500 Linear Systems Theory
ESE 502 Introduction to Spatial Analysis
ESE 504 Introduction to Optimization Theory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESE 505</td>
<td>Control of Systems</td>
</tr>
<tr>
<td>ESE 530</td>
<td>Elements of Probability Theory and Random Processes</td>
</tr>
<tr>
<td>ESE 531</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>ESE 603</td>
<td>Simulation Modeling and Analysis</td>
</tr>
<tr>
<td>ESE 632</td>
<td>Random Process Models and Optimum Filtering</td>
</tr>
<tr>
<td>ESE 674</td>
<td>Information Theory</td>
</tr>
<tr>
<td>MATH 584</td>
<td>Mathematics of Medical Imaging</td>
</tr>
<tr>
<td>MATH 512</td>
<td>Advanced Linear Algebra</td>
</tr>
<tr>
<td>MEAM 522</td>
<td>Fundamentals of Sensor Technology</td>
</tr>
<tr>
<td>MEAM 527</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>MEAM 528</td>
<td>Advanced Kinematics</td>
</tr>
<tr>
<td>STAT 500</td>
<td>Applied Regression and Analysis of Variance.</td>
</tr>
<tr>
<td>STAT 510</td>
<td>Probability</td>
</tr>
<tr>
<td>STAT 511</td>
<td>STATISTICAL INference</td>
</tr>
<tr>
<td>STAT 512</td>
<td>Mathematical Statistics.</td>
</tr>
<tr>
<td>STAT 530</td>
<td>Probability</td>
</tr>
<tr>
<td>STAT 541</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>STAT 542</td>
<td>Bayesian Methods and Computation</td>
</tr>
<tr>
<td>STAT 550</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>STAT 571</td>
<td>Modern Data Mining</td>
</tr>
</tbody>
</table>