
Matthew DiFrancesco, Emily Wible, Amanda Yung

Clients: Dr. James Gee and Dr. Lynne Schwartz
Abramson Pediatric Research Center

Background

- Software may induce neuronal apoptosis in neonatal brain
- Hippocampal-related cognition affected in behavioral tests (spatial working memory)
- Current methods are labor-intensive or practically unsuitable
- Manual segmentation—labor-intensive, prone to human error
- Traditional segmentation—requires creation of deformable atlas with data not readily available
- FTR-SNAP offers an ideal mix of automatic and manual segmentation components
- Easy-to-use for clinicians, researchers, and technicians, unsuitable for computer programming
- Design a protocol to reliably measure the volume of the rat hippocampus with the FTR-SCAP interface

Objective and Design Challenges

Objective: To develop a robust semi-automatic computer method that determines the volume of the rat hippocampus from a magnetic resonance image.

Specifications:
- Inter- and intra-rater reliability of at least 0.90, as measured by the intraclass correlation coefficient
- Detection of a rat hippocampal volume difference of less than 20% between image sets
- Segmentation of hippocampi in under 1 minute

Risks:
- Differential anatomical boundaries of the rat hippocampus
- Increased variability due to pre-existing knowledge of hippocampal shape affecting the ability to make final adjustments in the segmented hippocampus

Constraints:
- Inter-subject variability
- Small sample size (N=4)
- Scalability in software functionality

Results: Segmentation Parameters

Parameter	Categorical Label	Inter-Rater Reliability (ICC)	Intra-Rater Reliability (ICC)	Data Coefficients (calculated through SRM-SNAP segmentation of 40 slices)
Volume	Categorical Label	Inter-Rater Reliability (ICC)	Intra-Rater Reliability (ICC)	Data Coefficients (calculated through SRM-SNAP segmentation of 40 slices)
		0.94	0.92	r = 0.82, p < 0.001
		0.86	0.91	r = 0.80, p < 0.001

Conclusions and Recommendations

Conclusions:
- A segmentation protocol was developed for segmenting the rat hippocampus in MR images
- The protocol allowed for consistent volume measurements between raters, and between measurements from the same rater.

Recommendations:
- Modify FTR-SNAP interface to improve manual segmentation portion of the segmentation process
- Use segmentation protocol on MR images from isotropan-exposed rats

Acknowledgements
We would like to thank Dr. Lynne Schwartz and Dr. James Gee for their guidance and support throughout our senior design project.