IMPROVED TREATMENT OF PLAGIOCEPHALY

Clients:

Daniel Bogen, M.D., Ph.D. Calli Clark, Boston Brace/NOPCO

Consultants:

sensors and connects

them within the helmet

Yuning Chien Katherine Gerasimowicz Kenneth Hwu Clarence Quah

Objectives, Specifications, Constraints & Risks OBJECTIVES

To produce a method of measuring contact forces applied by orthotic helmet on the skull

Maximum detectable force is 9.21 lb-force

Minimum detectable force is 0.385 lb-force

Sensors must conform to 3D surface

Noise is < 0.385 lb-force

To achieve a better, faster, and more complete treatment for plagiocephaly

SPECIFICATIONS

- Battery-powered
- Sensors < 1" in thickness</p>
- Aliplast foam is material in contact with head
- Device in helmet is undetectable to patient

CONSTRAINTS

- Materials should be:
- Non-toxic
- Currently used in orthotic helmets
- Readily available
- Low cost

- Sensors may be destroyed in the process of building the helmet.
- Sensors may be detectable if they are not small enough.
- Sensors may not be sensitive to relevant force range

Device Illustration Battery-powered interface dircuit board connects sensor to computer Capacitive sensor and LED circuit board connect to form com bine disensor Wiring hamess

Production Methods

Attacking sensors to circuit boards

Operation Block Diagram

LED MODE: Used to light LEDs up, with colors and flashing rates corresponding to nine levels of applied force

Set up progra sensor outp

COMPUTER OUTPUT MODE:

Used to calibrate sensors, choose display mode, and read quantitative

Results: Force / Sensor Output Relationship

Selsor1 Selsor2 Selsor3 ASelsor4

- Highly linear relationship between sensor output and
- Sensor sensitivity decreased after incorporation into helmet
- Linearity was unaffected by incorporation into helmet $(R^2 = 0.99 \text{ for each sensor})$
- Connection of sensor 1 was weakened during helmet incorporation

Specifications vs. Actual Performance

Specification	Specified	Actual Performance	Test Method
Battery-powered	Has battery	Has battery	N/A
Thickness	< 1" (25.4 mm)	4mm	N/A
Foam in contact with head	Aliplastfoam	Aliplast foam	N/A
Patient comfort	Should not be able to detect device in helmet	Could not detect device in helmet	Have consultant try on helmet
Maximum force	9.21 lb-force	≥ 15 lb-force	Apply load with mechanical force transducer
Minimum force	0.385 lb-force	0.128 lb-force	Calculate sensitivity from output-force calibration curve
Noise	< 0.385 lb-force	0.193 lb-force	Record output for one minute after system has been at rest for a substantial period

Conclusions, Recommendations, & Acknowledgements

- Incorporated force-measuring system into orthotic helmet
- Designed a system that gives output corresponding to applied force However, sensitivity of system was reduced following incorporation into helmet
- Strategically designed system so that LEDs are visible through the helmet casing
- 3D surface did not adversely affect capacitance measurement
- This is a result of designing and building the sensors on a 3D surface

RECOMMENDATIONS

- Perform clinical studies using helmets with force-measuring system on patients Add more layers to sensors to increase capacitance so that sensitivity will be less
- affected by system incorporation into helme When building the system into the helmet, pull the last layer of foam and cut a window for the LED sensors after setting the sensors

ACKN OWLEDGEMENTS Special tranks to Dr. Daniel Bogen and Call Clark for supporting and guiding us throughout the project ©